Economic and Environmental Assessment of Low-Carbon Concrete Using Rice Husk Ash and Steel Industry By-Products: Toward Sustainable and Circular Construction Finance

Virginia Amelia Supranta

Universitas Gajah Mada, Indonesia Asia University, Taiwan virginiaamelia2018@mail.ugm.ac.id

Abstract

The cement sector accounts for approximately 7–8% of global anthropogenic CO₂ emissions (Andrew, 2019), posing both environmental and financial challenges to achieving carbon-neutral construction. This study evaluates the techno-economic and environmental feasibility of lowcarbon concrete incorporating rice husk ash (RHA) and steel industry by-products—groundgranulated blast-furnace slag (GGBFS) and steel slag (SS)—as partial substitutes for ordinary Portland cement (OPC). Experimental mixes with 10-30% binder substitution were tested for compressive strength, durability, and microstructural performance, while a cradle-to-gate lifecycle assessment (LCA) quantified the environmental and cost impacts in accordance with ISO 14040/44 standards. The optimal blend (10% RHA + 15% GGBFS + 5% SS) achieved ≈46 MPa 28-day compressive strength—~8% higher than OPC—and exhibited enhanced chloride resistance. LCA results revealed ~30% lower global-warming potential (GWP), ~20% lower acidification potential (AP), and an estimated ~15% reduction in production cost per cubic meter of concrete. These improvements strengthen the financial case for low-carbon materials by reducing carbon liabilities, improving resource efficiency, and aligning with sustainable investment frameworks under the UN SDG 12 and EU Taxonomy for sustainable activities. The findings provide evidencebased insights for policymakers, investors, and construction firms seeking to integrate material innovation into green finance and circular economy strategies.

Keywords: Low-carbon concrete, Rice husk ash (RHA), Ground-granulated blast-furnace, Steel slag, Life-cycle assessment, Sustainable investment, Circular economy, Carbon reduction.