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Abstract:

In this paper, we investigate whether the statistics Tﬁ for testing Hg . B =0y
Versus Hlﬁ . B # [p from the traditional regression model from the standard
regression model Y; = o+ 8X; +u; where u; is assumed to be iid N (0, 0?) could
be used for regression with autoregressive noise. To do so, we set V; = Y1+ Y5,
with Y5, = ¢Y2,-1 + e, in which ¢ i (0, 03) so that the regression contains
autoregressive noise and we use the statistics T' ﬁ, for testing H()B : B = [y versus
Hlﬁ : B # By when the actual § > 0, for example, § = 0.1. In our simulation,
we found that the average rejection rate is less than the level of significance for
any sample size N smaller than 100. However, for large N, say, N = 1000, the
test confirms that the model is significant. Our findings confirm that the test
from the standard regression model could make a significant regression with
autoregressive noise become insignificant for small sample sizes, but not for

very large sample sizes.
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1 Introduction

Based on the foundational work of |Granger and Newbold (1974) to address
regressing a stationary series, Y;, on a non-stationary series, X;, (we call it
the I0I1 model), many papers in the literature use the 10I1 model. For exam-
ple, Singh et al. (2011)) regressed stock returns (which are stationary) on GDP
(which is not stationary). However, very few studies, if there are any, have
examined whether the I0I1 model has problems. To distinguish the I0I1 model,
we call the traditional regression model of regressing a stationary time series
on a stationary time series the /0/0 model. To test whether using the statistics
Tﬁ, from the 7070 model can be used for testing Hg : B = [ versus Hlﬁ 1 B # Bo
in the 70/1 model, Wong and Yue (2024) conducted simulations and found
that the I0I1 model could be spurious. They also show that the statistics Tf,
from the I0I0 model cannot be used for the I0/1 model. To bridge the gap
in the literature, in this paper, we introduced three remedies to overcome the

limitations of the statistics.

Our first proposed remedy (Remedy (1)) is to recommend academics and prac-
titioners regress Y; on X, = X;— X; 1. We then conduct simulations to examine
the performance of Remedy [ We find that using Remedy [I] could correct the
spurious problem, but it results in getting a much smaller size. Thus, we con-

clude that Remedy (1] is not a good remedy.

We then develop Remedy [2|and recommend it to academics and practitioners
to regress Y/ = (1 — ggyB)Yt on X{ = X; — X;_1. We then conduct simulations
to examine the performance of Remedy [2 and find that Remedy [2 not only can
correct the spurious problem, but also can keep the size close to the theoretical

benchmark. Thus, we conclude that Remedy [2|is a very good remedy.



Last, we develop Remedy |3| and recommend it to academics and practition-

ers to regress Y/ = 1_3;; 5 on X{ = 1_{;; 5, conduct simulations to examine
the performance of Remedy [3, and find that, similar to Remedy [2, Remedy
can correct the spurious problem and keep the size close to the theoretical
benchmark. Thus, we conclude that Remedy |3] is also a very good remedy.
To examine between Remedy [2] and Remedy [3] which one is better, we con-
ducted simulation and found that the overall average of the rejection rate by
using Remedy [2] is 0.0484, while the overall average of the rejection rate by
using Remedy |3|is 0.0496, which is closer to the theoretical benchmark. Thus,
we conclude that Remedy |3 is slightly better according to the results of our

simulation.

Section [2] provides background literature on the topic. Section |3| discusses
the standard linear regression model and then discuss the model setting for
regressing a stationary time series on a non-stationary time series. Section [
discusses the model setup for the simulation and develops an algorithm for
the simulations while Section |5 discusses the simulation results by using the
algorithm developed in our paper. The last section concludes and suggests

future extensions.

2 Literature Review

Time series analysis involves understanding and modeling sequences of data
points collected over time at regular intervals. Several models, see, for exam-
ple, (Tsay, 1989, Nakatani and Terasvirta, [2009) have been developed to use
time series to analyze stationary data. These models can be used for nonsta-

tionary data if the data becomes stationary after differencing or other transfor-



mations(Brockwell and Davis, [2002). In addition, ARIMA models can be used

for nonstationary series.

One of the most important issues in time series analysis is how to test a
spurious model. For example, (Granger and Newbold (1974) has shown that
regressing two independent non-stationary time series could get highly signifi-
cant coefficients and high R? values, though the series are independent. [Phillips
(1986)), |Sun| (2004)), and others have developed asymptotic results for spurious
regressions and [Ventosa-Santaularial (2009), Marmol (1995)), and Kao| (1999)
further extended the theory by providing diagnostic tools for detecting spurious
regressions for /(1) and fractionally integrated (I(d)) processes with 0 < d < 1.

(Granger and Newbold|, |1974; Phillips, |1986) and others have concluded that
regressing independent non-stationary series could lead to incorrect conclusions.
Other studies in this area include |Agiakloglou| (2013) and Kim et al. (2004).
(Engle and Granger, 1987)) proposed either differencing the non-stationary se-
ries or using cointegration techniques to avoid spurious regression. On the
other hand, [Pesaran et al.| (1999) and Westerlund| (2008) found that a combina-
tion of stationary (1(0)) and non-stationary (/(1)) series could lead to spurious
results. Furthermore, [T'say and Chung| (2000)) extended the theory by consider-
ing fractionally integrated (/(d)) series to model long-memory processes, while

Abeysinghe (1994) extended the theory to involve seasonal unit roots.

Recently, conducting simulations, |(Cheng et al.| (2021)) found that the regres-
sion of two independent and nearly non-stationary series may not have any
spurious problem in some situations, Cheng et al. (2022)) found that insignif-
icant regression could be significantly related, Wong et al.| (2024) found that
regression of stationary time series could be spurious, [Wong and Yue (2024))

found that regressing a stationary series on a non-stationary series may not



get any meaningful outcomes, and Wong and Pham| (2024d) found that the
correlation of a stationary series with a non-stationary series may not get any

meaningful outcomes.

Based on the foundational work of |(Granger and Newbold| (1974)) to address
the I0I1 model, many papers in the literature use the I0I1 model. For example,
Singh et al. (2011 regressed stock returns on GDP. Recently, [Wong and Yue
(2024)) conducted simulations and found that the I0I1 model could be spurious,
and the statistics T _,6 from the I0I0 model cannot be used for the 7071 model.
To extend their work, in this paper, we introduced three remedies to overcome

the limitations of the statistics.

3 The Models

Wong and Yue| (2024)) conclude that regressing a stationary time series, Y;, on a
non-stationary time series, X;, could yield any meaningful result. To bridge the
gap in the literature, in this paper, we provide a remedy approach and show
that by using the remedy approach, the test can be used to test whether Y;
and X; are significantly related. To do so, we first discuss the standard linear

regression model (we call it the 1010 model) in this section.

3.1 Linear regression model

In this paper, we follow [Wong and Yue (2024) to consider the following simple

linear regression model and call it I0I0 model:

Y;ZOé—'—BXt—f—Ut, tzl,,N, (31)



in which u; is the error term assumed to be iid N(0,02), N is the sample size,
and [ is slope parameter with the following estimate B ;

s L - XY - Y)

S SO e .
: 52 , 9
Var(h) = S(X; —X)?2 S5 = S(X;—X)?

In this model setting, to test whether there is any linear relationship between

X; and Y}, academics test the following hypotheses:

Hoﬁ : 8= 0y Versus Hlﬂ : 8 # By, (3.3)

by using the following T statistic:

T _ 8- @0
SE(B)

Readers may refer to Wong and Yue (2024)) for more information.

(3.4)

3.2 Model a stationary series with a non-stationary series

To remedy how to test the model of regressing a stationary time series on a
non-stationary time series, we first follow Wong and Yue| (2024)) to define Y;
and X, as follows:

Yi=oYii4e, N0 , Xi=X1+e, e~ N0, (35)

with |¢| < 1. We also assume Xy = 0,Yy = p. [Wong and Yue| (2024) have
shown that regressing a stationary Y; on a non-stationary X; may not yield any
meaningful outcome and could result in spurious regression if one uses the tests

shown in Section 3.1

4 Remedy

To remedy the issue, first, we propose to use the following remedy:
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Remedy 1 We let
Xt/ - (]_ - B)Xt - Xt - thl 3 (41)

regress Yy on X{ by using the following equation:
Yi=a+B8X/+u, t=1,--- N; (4.2)
and make the following conjecture:

Conjecture 4.1 Regressing Y; on X] will get meaningful outcome where Yy is

defined in Equation (3.5) and X| is defined in Equation (4.1)).

In order to examine the above conjecture, we also examine the following con-

jecture:

Conjecture 4.2 Regressing Y; on X, could not be spurious if one uses the tests

from the standard regression model as shown in Section |3.1 where Y; is defined

in Equation (3.5) and X| is defined in Equation (4.1)).

However, we believe the following conjecture will hold:

Conjecture 4.3 The tests from the standard regression model as shown in Sec-
tion[3.1) is not appropriate to be used for regressing Yy on X| where Y} is defined
in Equation (3.5) and X| is defined in Equation (4.1)).

Thereafter, we propose to use the following remedy:
Remedy 2 We let
Y/ =(1-¢yB)Y, =Y, — ¢yYi1, (4.3)
regress Y, on X| by using the following equation:
Y/=a+pX,+u, t=1,---,N; (4.4)

and make the following conjecture:



Conjecture 4.4 Regressing Y] on X, will get meaningful outcome where both

Y/ and X| are defined in Equation (4.3) and Equation (4.1)), respectively.

In order to examine the above conjecture, we also examine the following con-

jecture:

Conjecture 4.5 Regressing Y} on X{ could not be spurious if one uses the tests
from the standard regression model as shown in Section where Y) and X}
are defined in Equation (4.3) and Equation (4.1)), respectively.

Last, we propose to use the following remedy:

Remedy 3 We let

Y: Xi
Y/ = —t  and X! = —t 45
A R 49
regress Y)" on X| by using the following equation:
Y=a+pX'+u, t=1--- N; (4.6)

and make the following conjecture:

Conjecture 4.6 Regressing Y, on X[ will get meaningful outcome where Y}”

and X{ are defined in Equations (4.5)).

In order to examine the above conjecture, we also examine the following con-

jecture:

Conjecture 4.7 Regressing Y/" on X| could not be spurious if one uses the
tests from the standard regression model as shown in Section [3.1 where Y/" and
X/ are defined in Equations (4.5)).



5 Simulation Setup and Algorithm

To investigate whether all the conjectures stated in this paper hold, we set up a
model for simulation and develop algorithms for our simulations in this section,

and discuss the simulation results in the next section.

5.1 Model Setup

In this paper, we will modify the setup introduced by [Wong and Yue| (2024) and
briefly state the modified setup here. We note that [Wong and Yue (2024) use
Equation to define both Y; and X; and conclude that the statistics cannot
be used for the 70/1 model. Thus, in this paper, we will not use Equation (3.5))

to define both Y; and X; in our simulation.

First, we follow [Wong and Yue| (2024)) to use the following four different lengths
to control the lengths of time series in our simulation:

(i) N=100, (ii) N=500, (iii) N=1000.

We then follow Wong and Yue (2024)) to use the different values of ¢ in our

simulation:

5.2 Algorithm

We then modify the simulation procedure introduced by Wong and Yue, (2024))
to be the algorithm used in this paper. Since X; and Y; are generated inde-
pendently, there is no linear relationship between them. Consequently, under
the null hypothesis, HOB in (3.3]), we expect no systematic rejection, except for

random fluctuations at the nominal significance level. For each case defined by

10



the choice of N and ¢ in Section [5.1], we first construct the following algorithm
for testing Conjectures [4.1] and [4.2]

Algorithm 1

1. Simulate 10000 independent pairs of time series X; and Y; by using the
model in Equation (3.5) with coefficients described in Section [p.1]

2. Transform on X, into its first-difference form according to the remedy
approach in Equation (4.1)) such that X; = X; — X;_;, while keeping Y; in

its original form.

3. Fit the regression model Y; = a+ X, +u; according to Remedy I compute
B , the test statistic T” in Equation (3.4]), and the corresponding p-value.

4. Repeat Steps 2 and 3 for all simulated samples, and record the distribution

of B and p-values.

5. Compute the rejection rate, i.e. the proportion of cases in which Hoﬂ :5=0

is rejected at the 5% significance level.

We now construct the following algorithm for testing Conjectures [4.4] and

4.9
Algorithm 2

1. Simulate 10000 independent pairs of time series X; and Y; using the model
in Equation ([3.5)) with coefficients described in Section 5.1}

2. Transform both series as follows: Y, = Yt—gng}fl and X|=X;—X; 1.

3. Fit the regression model Y} = a+ X]+u; according to Remedy 2| compute

B , the test statistic 77 in Equation [3.4] and the corresponding p-value.

11



4. Repeat Steps 2 and 3 for all simulated samples, and record the distribution

of B and p-values.

5. Compute the rejection rate, i.e. the proportion of cases in which HOB =0

is rejected at the 5% significance level.

We then construct the following algorithm for testing Conjectures [4.6] and [4.7}

Algorithm 3

1. Simulate 10000 pairs of X; and Y; defined in Equation (3.5]) with coefficients
described in Section 5.1l

2. Let V)" and X}’ be defined in Equations (4.5)).

3. Fit the regression model V)" = a + X/ + u; according to Remedy [3]

compute B , the test statistic 7 in |3.4] and the corresponding p-value.

4. Repeat Steps 2 and 3 for all simulated samples, and record the distribution

of B and p-values.

5. Compute the rejection rate, i.e. the proportion of cases in which Hoﬁ =0

is rejected at the 5% significance level.

The above algorithm helps to examine whether the ¢ statistic in (3.4)) for the

model in

3.1

follows a Student t-distribution. If X; and Y; are unrelated, Hoﬁ

in (3.3)) should be rejected 5% of the time if the significance level is 0.05. If

5 ’s follows student t-distribution and the test is perfect, then the rejection rate

should be exactly 0.05. If the rejection rate is significantly greater than 0.05,

then the results of the t-test cannot be used.
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6 Simulation Results

Wong and Yue (2024) use Equation to define both Y; and X; and found
that: (a) when ¢ = 0, the rejection rate is about 5%; (b) when ¢ > 0, more
than 6% of the independent variables are significant at the 5% level. Moreover,
(bl) When N increases, the rejection rate is stable; (b2) When |¢| increases,
the rejection rate increases. In particular, when ¢ = 0.9, the rejection rate
reaches around 60%. Thus, they conclude that the ¢ statistics do not follow the
usual distribution under the 70/1 model, and standard regression tests cannot

be applied directly in this setting.

To remedy the problem, in this paper, we first propose using Remedy (1| by
regressing Y; directly on the transformed series X{. The rejection rates for this

setting are reported in Table [6.1].

Table 6.1: Rejection Rate in the simulation for various ¢ and N when regressing Y; on Xj.

Case | Coefficients || N=100 | N=500 | N=1000 | Average
(a) p=0 0.0496 | 0.0487 | 0.0523 0.0502
(b) ¢ =0.1 0.0385 | 0.0384 | 0.0406 0.0392
(c) ¢ =0.3 0.0196 | 0.0190 | 0.0198 0.0195
(d)
(

¢ =0.5 0.0074 | 0.0071 | 0.0057 0.0067
¢ =07 0.0011 | 0.0001 | 0.0004 0.0005
=09 0.0000 | 0.0000 | 0.0000 0.0000

Note: X, = (1 — B)X; = X¢ — X;_1. Readers may read Remedy (1| for more information.

Table|6.1]| paints a strikingly different picture. When ¢ = 0, Y; consists purely
of white noise, and the rejection rate is close to the nominal 5% level. However,
as ¢ increases, the rejection rate declines monotonically. By the time ¢ > 0.7,
the rejection rate falls to nearly zero, and for ¢ = 0.9, the test never rejects the

null at all across 10,000 replications. This pattern suggests that regressing Y; on
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X/ systematically over-rejects as persistence in ¢ increases. The test no longer
has the correct size and becomes increasingly conservative. In other words,
although X] is stationary, using it to explain the original Y; does not restore
valid inference. These results support Conjectures and to the extent
that the regression does not generate spurious significance; however, they also
confirm Conjecture [4.3] which posits that the standard ¢ test is not appropriate
in this case. In fact, the dramatic under-rejection indicates that the classical
inference framework breaks down, and new testing approaches may be needed
for the Y; and X] specification. The results in Table suggest that though
using Remedy (1] to regress Y; on X] = X; — X; 4 is a good remedy to correct
the spurious problem, it results in a smaller size. Thus, this concludes that

Remedy [1]is not a good remedy. We will explore the issue in the future.

We then propose using Remedy 2 by regressing Y/ = (1 — oy B)Y, =Y, —
ngthl on X/ = (1-B)X; = X;—X;_1 and examine whether this transformation
restores the validity of the test. The rejection rates under this setting are

reported in Table [6.2]

Table 6.2: Rejection Rate in the simulation for various ¢ and N when regressing Y, on X].

Case | Coefficients || N=100 | N=500 | N=1000 | Average
) p=0 0.0488 | 0.0486 | 0.0485 0.0486
) ¢ =0.1 0.0490 | 0.0473 | 0.0478 0.0480
(c) =03 0.0482 | 0.0510 | 0.0473 0.0488
(d) ¢ =0.5 0.0483 | 0.0480 | 0.0513 0.0492
)
)

¢ =0.7 0.0480 | 0.0458 | 0.0485 0.0474
=09 0.0446 | 0.0473 | 0.0535 0.0485
Overall Average 0.0484

Note: Y/ = (1 — quB)Yt =Y, — ¢yY,_1 and X, =(1-B)X; = X; — X;—1. Readers may read

Remedy [2| for more information.

Table 6.2 shows that the rejection rates remain extremely close to the nom-

14



inal 5% level across all cases, regardless of the value of ¢ or the sample size V.
Even at the extreme case ¢ = 0.9, the rejection rate is 4.9%, which is nearly
identical to the theoretical benchmark. These results provide strong evidence
that the remedy transformation successfully eliminates the spurious regression
problem. The ¢ test based on the standard regression model behaves as ex-
pected, and the distribution of the test statistic appears valid. This supports
both Conjecture (that regressing Y/ on X/ yields meaningful outcomes)
and Conjecture (that the regression is not spurious under the standard test
framework). The results in Table suggest that using Remedy [2] to regress
Y/ =(1—¢yB)Y; =Y, — dyY;y on X] = (1 — B)X; = X; — X;_1 is not only a
good remedy to correct the spurious problem, but also a good remedy to keep
the size to be close to the theoretical benchmark. Thus, this concludes that

Remedy [2] is a very good remedy.

Table 6.3: Rejection Rate in the simulation for various ¢ and N when regressing Y,” on Xj.

oy N=100 | N=500 | N=1000 | Average
oy =0 0.0498 | 0.0472 | 0.0514 0.0495
¢y =0.1 || 0.0506 | 0.0483 | 0.0516 0.0502
oy = 0.3 || 0.0489 | 0.0495 | 0.0515 0.05
¢y =0.5 0.05 0.0472 | 0.0518 0.0497
¢y = 0.7 || 0.0456 | 0.0501 0.0509 0.0489
¢y =0.9 || 0.0481 | 0.0506 | 0.0495 0.0494
Overall Average 0.0496

Note: Y/ = 17;:; 5 and X{ = %' Readers may read Remedy 3| for more information.

Similar to the results in Table [6.2], Table [6.3] also shows that the rejection
rates remain extremely close to the nominal 5% level across all cases, regardless
of the value of ¢ or the sample size N. Even at the extreme case ¢ = 0.9,
the rejection rate is 4.9%, which is nearly identical to the theoretical bench-

mark. These results provide strong evidence that the remedy transformation

15



successfully eliminates the spurious regression problem. The ¢ test based on
the standard regression model behaves as expected, and the distribution of the
test statistic appears valid. This supports both Conjecture (that regressing
Y/ on X/ yields meaningful outcomes) and Conjecture 4.7 (that the regression
is not spurious under the standard test framework). The results in Table

suggest that using Remedy |3[ to regress Y,” = 17;2 5 on X/ = 17?;; = is not only
a good remedy to correct the spurious problem, but also a good remedy to keep
the size to be close to the theoretical benchmark. Thus, this concludes that

Remedy [3]is a very good remedy.

Now, we examine between Remedy 2] and Remedy [3, which one is better.
Since the overall average of the last column in Table is 0.0484, while the
overall average of the last column in Table [6.3]is 0.0496, which is closer to the
theoretical benchmark. Thus, we conclude that Remedy |3] is slightly better

according to our simulation.

7 Conclusion and Future Study

Based on the foundational work of Granger and Newbold (1974) to address the
issue of regressing a stationary time series, Y;, on a non-stationary time series,
X¢, (we call it the I0I1 model), many papers in the literature report results
of the I0I1 model. For example, Singh et al. (2011) regressed stock returns on
GDP. However, very few studies have examined whether there are any problems
with using the model. Recently, Wong and Yue (2024) conducted a simulation
and found that regressing a stationary time series, Y;, on a non-stationary time
series, X;, could be spurious. They then show that the statistics Tff for testing
Hg : B = [y versus Hf : 8 # By from the traditional regression model (we call
it the I0I0 model) do not have any asymptotic distribution with both mean and

16



variance tending to infinity and conclude that the statistics cannot be used for
the 7071 model. To bridge the gap in the literature, in this paper, we introduced

three remedies to overcome the limitations of the statistics.

Our first proposed remedy (Remedy (1)) is to recommend academics and prac-
titioners regress Y; on X{ = X; — Xy (see Equation (4.1))). Our simulation
results (as shown in Table suggest that using Remedy |1| could correct the
spurious problem, but it results in getting a much smaller size. Thus, this

concludes that Remedy (1] is not a good remedy.

Our second proposed remedy (Remedy [2) is to recommend academics and
practitioners regress Y/ = (1 — ¢y B)Y; (see Equation (.3)) on X| = X; — X;_4
(see Equation (4.1))). Our simulation results (as shown in Table suggest
that Remedy [2]is not only a good remedy to correct the spurious problem, but
also a good remedy to keep the size close to the theoretical benchmark. Thus,

we conclude that Remedy [2|is a very good remedy.

Our third proposed remedy (Remedy is to recommend academics and

practitioners regress Y, = 1_2?‘/ 5 on X/ = 1_25; 5 (see Equation (4.5)). Sim-
ilarly, our simulation results (as shown in Table suggest that Remedy
is also a good remedy to correct the spurious problem as well as keep the size
close to the theoretical benchmark. Thus, we conclude that Remedy |3]is also a
very good remedy. To examine between Remedy [2] and Remedy [3, which one
is better, we conducted simulation and found that the overall average of the
rejection rate (see Table by using Remedy [2| is 0.0484, while the overall
average of the rejection rate (see Table by using Remedy [3|is 0.0496, which
is closer to the theoretical benchmark. Thus, we conclude that Remedy |3| is

slightly better according to our simulation.

There could be some limitations of our paper. For example, the models used

17



in our paper is very simple. Thus, extensions of our paper include studying
more complicated models. Second, our paper only provided the results of the
simulation but did not develop any theory for the issue. Thus, extensions of our
paper include developing some theories on the issue, see, for example, Wong
and Pham| (2022) and Wong and Pham (20245). We also note that [Wong and
Pham (2022) and [Wong and Pham (2023) have shown that the test from the
standard regression model could make significant regression with autoregressive
noise become insignificant for small sample. Academics could incorporate the
idea of this paper to extend the work from Wong and Pham| (2022) and [Wong
and Pham| (2023).
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