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Abstract:

In this paper, we investigate whether the statistics T β
N for testing Hβ

0 : β = β0

versus Hβ
1 : β ̸= β0 from the traditional regression model from the standard

regression model Yt = α+βXt+ut where ut is assumed to be iid N(0, σ2) could

be used for regression with autoregressive noise. To do so, we set Yt = Y1,t+Y2,t

with Y2,t = ϕY2,t−1 + et in which et
iid∼ (0, σ2

e) so that the regression contains

autoregressive noise and we use the statistics T β
N for testing Hβ

0 : β = β0 versus

Hβ
1 : β ̸= β0 when the actual β > 0, for example, β = 0.1. In our simulation,

we found that the average rejection rate is less than the level of significance for

any sample size N smaller than 100. However, for large N , say, N = 1000, the

test confirms that the model is significant. Our findings confirm that the test

from the standard regression model could make a significant regression with

autoregressive noise become insignificant for small sample sizes, but not for

very large sample sizes.
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1 Introduction

Based on the foundational work of Granger and Newbold (1974) to address

regressing a stationary series, Yt, on a non-stationary series, Xt, (we call it

the I0I1 model), many papers in the literature use the I0I1 model. For exam-

ple, Singh et al. (2011) regressed stock returns (which are stationary) on GDP

(which is not stationary). However, very few studies, if there are any, have

examined whether the I0I1 model has problems. To distinguish the I0I1 model,

we call the traditional regression model of regressing a stationary time series

on a stationary time series the I0I0 model. To test whether using the statistics

T β
N from the I0I0 model can be used for testing Hβ

0 : β = β0 versus H
β
1 : β ̸= β0

in the I0I1 model, Wong and Yue (2024) conducted simulations and found

that the I0I1 model could be spurious. They also show that the statistics T β
N

from the I0I0 model cannot be used for the I0I1 model. To bridge the gap

in the literature, in this paper, we introduced three remedies to overcome the

limitations of the statistics.

Our first proposed remedy (Remedy 1) is to recommend academics and prac-

titioners regress Yt on X ′
t = Xt−Xt−1. We then conduct simulations to examine

the performance of Remedy 1. We find that using Remedy 1 could correct the

spurious problem, but it results in getting a much smaller size. Thus, we con-

clude that Remedy 1 is not a good remedy.

We then develop Remedy 2 and recommend it to academics and practitioners

to regress Y ′
t = (1− ϕ̂YB)Yt on X ′

t = Xt −Xt−1. We then conduct simulations

to examine the performance of Remedy 2 and find that Remedy 2 not only can

correct the spurious problem, but also can keep the size close to the theoretical

benchmark. Thus, we conclude that Remedy 2 is a very good remedy.
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Last, we develop Remedy 3 and recommend it to academics and practition-

ers to regress Y ′′
t = Yt

1−ϕY B
on X ′′

t = Xt

1−ϕXB , conduct simulations to examine

the performance of Remedy 3, and find that, similar to Remedy 2, Remedy

3 can correct the spurious problem and keep the size close to the theoretical

benchmark. Thus, we conclude that Remedy 3 is also a very good remedy.

To examine between Remedy 2 and Remedy 3, which one is better, we con-

ducted simulation and found that the overall average of the rejection rate by

using Remedy 2 is 0.0484, while the overall average of the rejection rate by

using Remedy 3 is 0.0496, which is closer to the theoretical benchmark. Thus,

we conclude that Remedy 3 is slightly better according to the results of our

simulation.

Section 2 provides background literature on the topic. Section 3 discusses

the standard linear regression model and then discuss the model setting for

regressing a stationary time series on a non-stationary time series. Section 4

discusses the model setup for the simulation and develops an algorithm for

the simulations while Section 5 discusses the simulation results by using the

algorithm developed in our paper. The last section concludes and suggests

future extensions.

2 Literature Review

Time series analysis involves understanding and modeling sequences of data

points collected over time at regular intervals. Several models, see, for exam-

ple, (Tsay, 1989; Nakatani and Teräsvirta, 2009) have been developed to use

time series to analyze stationary data. These models can be used for nonsta-

tionary data if the data becomes stationary after differencing or other transfor-
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mations(Brockwell and Davis, 2002). In addition, ARIMA models can be used

for nonstationary series.

One of the most important issues in time series analysis is how to test a

spurious model. For example, Granger and Newbold (1974) has shown that

regressing two independent non-stationary time series could get highly signifi-

cant coefficients and high R2 values, though the series are independent. Phillips

(1986), Sun (2004), and others have developed asymptotic results for spurious

regressions and Ventosa-Santaulária (2009), Marmol (1995), and Kao (1999)

further extended the theory by providing diagnostic tools for detecting spurious

regressions for I(1) and fractionally integrated (I(d)) processes with 0 < d < 1.

(Granger and Newbold, 1974; Phillips, 1986) and others have concluded that

regressing independent non-stationary series could lead to incorrect conclusions.

Other studies in this area include Agiakloglou (2013) and Kim et al. (2004).

(Engle and Granger, 1987) proposed either differencing the non-stationary se-

ries or using cointegration techniques to avoid spurious regression. On the

other hand, Pesaran et al. (1999) and Westerlund (2008) found that a combina-

tion of stationary (I(0)) and non-stationary (I(1)) series could lead to spurious

results. Furthermore, Tsay and Chung (2000) extended the theory by consider-

ing fractionally integrated (I(d)) series to model long-memory processes, while

Abeysinghe (1994) extended the theory to involve seasonal unit roots.

Recently, conducting simulations, Cheng et al. (2021) found that the regres-

sion of two independent and nearly non-stationary series may not have any

spurious problem in some situations, Cheng et al. (2022) found that insignif-

icant regression could be significantly related, Wong et al. (2024) found that

regression of stationary time series could be spurious, Wong and Yue (2024)

found that regressing a stationary series on a non-stationary series may not
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get any meaningful outcomes, and Wong and Pham (2024a) found that the

correlation of a stationary series with a non-stationary series may not get any

meaningful outcomes.

Based on the foundational work of Granger and Newbold (1974) to address

the I0I1 model, many papers in the literature use the I0I1 model. For example,

Singh et al. (2011) regressed stock returns on GDP. Recently, Wong and Yue

(2024) conducted simulations and found that the I0I1 model could be spurious,

and the statistics T β
N from the I0I0 model cannot be used for the I0I1 model.

To extend their work, in this paper, we introduced three remedies to overcome

the limitations of the statistics.

3 The Models

Wong and Yue (2024) conclude that regressing a stationary time series, Yt, on a

non-stationary time series, Xt, could yield any meaningful result. To bridge the

gap in the literature, in this paper, we provide a remedy approach and show

that by using the remedy approach, the test can be used to test whether Yt

and Xt are significantly related. To do so, we first discuss the standard linear

regression model (we call it the I0I0 model) in this section.

3.1 Linear regression model

In this paper, we follow Wong and Yue (2024) to consider the following simple

linear regression model and call it I0I0 model:

Yt = α + βXt + ut , t = 1, · · · , N ; (3.1)
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in which ut is the error term assumed to be iid N(0, σ2), N is the sample size,

and β is slope parameter with the following estimate β̂:

β̂ =

∑N
t=1(Xt − X̄)(Yt − Ȳ )∑N

t=1(Xt − X̄)2
, (3.2)

V ar(β̂1) =
σ2∑

(Xi −X)2
, S2

β̂1
=

S2∑
(Xi −X)2

.

In this model setting, to test whether there is any linear relationship between

Xt and Yt, academics test the following hypotheses:

Hβ
0 : β = β0 versus Hβ

1 : β ̸= β0 , (3.3)

by using the following T β statistic:

T β =
β̂ − β0

SE(β̂)
, (3.4)

Readers may refer to Wong and Yue (2024) for more information.

3.2 Model a stationary series with a non-stationary series

To remedy how to test the model of regressing a stationary time series on a

non-stationary time series, we first follow Wong and Yue (2024) to define Yt

and Xt as follows:

Yt = ϕYt−1 + εt, εt
iid∼ N(0, σ2

ε) , Xt = Xt−1 + et, et
iid∼ N(0, σ2

e) , (3.5)

with |ϕ| < 1. We also assume X0 = 0, Y0 = µ. Wong and Yue (2024) have

shown that regressing a stationary Yt on a non-stationary Xt may not yield any

meaningful outcome and could result in spurious regression if one uses the tests

shown in Section 3.1.

4 Remedy

To remedy the issue, first, we propose to use the following remedy:
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Remedy 1 We let

X ′
t = (1−B)Xt = Xt −Xt−1 , (4.1)

regress Yt on X ′
t by using the following equation:

Yt = α + βX ′
t + ut , t = 1, · · · , N ; (4.2)

and make the following conjecture:

Conjecture 4.1 Regressing Yt on X ′
t will get meaningful outcome where Yt is

defined in Equation (3.5) and X ′
t is defined in Equation (4.1).

In order to examine the above conjecture, we also examine the following con-

jecture:

Conjecture 4.2 Regressing Yt on X ′
t could not be spurious if one uses the tests

from the standard regression model as shown in Section 3.1 where Yt is defined

in Equation (3.5) and X ′
t is defined in Equation (4.1).

However, we believe the following conjecture will hold:

Conjecture 4.3 The tests from the standard regression model as shown in Sec-

tion 3.1 is not appropriate to be used for regressing Yt on X ′
t where Yt is defined

in Equation (3.5) and X ′
t is defined in Equation (4.1).

Thereafter, we propose to use the following remedy:

Remedy 2 We let

Y ′
t = (1− ϕ̂YB)Yt = Yt − ϕ̂Y Yt−1 , (4.3)

regress Y ′
t on X ′

t by using the following equation:

Y ′
t = α + βX ′

t + ut , t = 1, · · · , N ; (4.4)

and make the following conjecture:
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Conjecture 4.4 Regressing Y ′
t on X ′

t will get meaningful outcome where both

Y ′
t and X ′

t are defined in Equation (4.3) and Equation (4.1), respectively.

In order to examine the above conjecture, we also examine the following con-

jecture:

Conjecture 4.5 Regressing Y ′
t on X ′

t could not be spurious if one uses the tests

from the standard regression model as shown in Section 3.1 where Y ′
t and X ′

t

are defined in Equation (4.3) and Equation (4.1), respectively.

Last, we propose to use the following remedy:

Remedy 3 We let

Y ′′
t =

Yt

1− ϕYB
and X ′′

t =
Xt

1− ϕXB
, (4.5)

regress Y ′′
t on X ′

t by using the following equation:

Y ′′
t = α + βX ′′

t + ut , t = 1, · · · , N ; (4.6)

and make the following conjecture:

Conjecture 4.6 Regressing Y ′′
t on X ′′

t will get meaningful outcome where Y ′′
t

and X ′′
t are defined in Equations (4.5).

In order to examine the above conjecture, we also examine the following con-

jecture:

Conjecture 4.7 Regressing Y ′′
t on X ′′

t could not be spurious if one uses the

tests from the standard regression model as shown in Section 3.1 where Y ′′
t and

X ′′
t are defined in Equations (4.5).
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5 Simulation Setup and Algorithm

To investigate whether all the conjectures stated in this paper hold, we set up a

model for simulation and develop algorithms for our simulations in this section,

and discuss the simulation results in the next section.

5.1 Model Setup

In this paper, we will modify the setup introduced by Wong and Yue (2024) and

briefly state the modified setup here. We note that Wong and Yue (2024) use

Equation (3.5) to define both Yt and Xt and conclude that the statistics cannot

be used for the I0I1 model. Thus, in this paper, we will not use Equation (3.5)

to define both Yt and Xt in our simulation.

First, we follow Wong and Yue (2024) to use the following four different lengths

to control the lengths of time series in our simulation:

(i) N=100, (ii) N=500, (iii) N=1000.

We then follow Wong and Yue (2024) to use the different values of ϕ in our

simulation:

(a) ϕ = 0, (b) ϕ = 0.1, (c) ϕ = 0.3, (d) ϕ = 0.5, (e) ϕ = 0.7, (f) ϕ = 0.9.

5.2 Algorithm

We then modify the simulation procedure introduced by Wong and Yue (2024)

to be the algorithm used in this paper. Since Xt and Yt are generated inde-

pendently, there is no linear relationship between them. Consequently, under

the null hypothesis, Hβ
0 in (3.3), we expect no systematic rejection, except for

random fluctuations at the nominal significance level. For each case defined by
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the choice of N and ϕ in Section 5.1, we first construct the following algorithm

for testing Conjectures 4.1 and 4.2:

Algorithm 1

1. Simulate 10000 independent pairs of time series Xt and Yt by using the

model in Equation (3.5) with coefficients described in Section 5.1.

2. Transform on Xt into its first-difference form according to the remedy

approach in Equation (4.1) such that X ′
t = Xt −Xt−1, while keeping Yt in

its original form.

3. Fit the regression model Yt = α+βX ′
t+ut according to Remedy 1, compute

β̂, the test statistic T β in Equation (3.4), and the corresponding p-value.

4. Repeat Steps 2 and 3 for all simulated samples, and record the distribution

of β̂ and p-values.

5. Compute the rejection rate, i.e. the proportion of cases in whichHβ
0 : β = 0

is rejected at the 5% significance level.

We now construct the following algorithm for testing Conjectures 4.4 and

4.5.

Algorithm 2

1. Simulate 10000 independent pairs of time series Xt and Yt using the model

in Equation (3.5) with coefficients described in Section 5.1.

2. Transform both series as follows: Y ′
t = Yt− ϕ̂Y Yt−1 and X ′

t = Xt−Xt−1.

3. Fit the regression model Y ′
t = α+βX ′

t+ut according to Remedy 2, compute

β̂, the test statistic T β in Equation 3.4, and the corresponding p-value.
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4. Repeat Steps 2 and 3 for all simulated samples, and record the distribution

of β̂ and p-values.

5. Compute the rejection rate, i.e. the proportion of cases in whichHβ
0 : β = 0

is rejected at the 5% significance level.

We then construct the following algorithm for testing Conjectures 4.6 and 4.7:

Algorithm 3

1. Simulate 10000 pairs ofXt and Yt defined in Equation (3.5) with coefficients

described in Section 5.1.

2. Let Y ′′
t and X ′′

t be defined in Equations (4.5).

3. Fit the regression model Y ′′
t = α + βX ′′

t + ut according to Remedy 3,

compute β̂, the test statistic T β in 3.4, and the corresponding p-value.

4. Repeat Steps 2 and 3 for all simulated samples, and record the distribution

of β̂ and p-values.

5. Compute the rejection rate, i.e. the proportion of cases in whichHβ
0 : β = 0

is rejected at the 5% significance level.

The above algorithm helps to examine whether the t statistic in (3.4) for the

model in (3.1) follows a Student t-distribution. If Xt and Yt are unrelated, Hβ
0

in (3.3) should be rejected 5% of the time if the significance level is 0.05. If

β̂’s follows student t-distribution and the test is perfect, then the rejection rate

should be exactly 0.05. If the rejection rate is significantly greater than 0.05,

then the results of the t-test cannot be used.
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6 Simulation Results

Wong and Yue (2024) use Equation (3.5) to define both Yt and Xt and found

that: (a) when ϕ = 0, the rejection rate is about 5%; (b) when ϕ > 0, more

than 6% of the independent variables are significant at the 5% level. Moreover,

(b1) When N increases, the rejection rate is stable; (b2) When |ϕ| increases,

the rejection rate increases. In particular, when ϕ = 0.9, the rejection rate

reaches around 60%. Thus, they conclude that the t statistics do not follow the

usual distribution under the I0I1 model, and standard regression tests cannot

be applied directly in this setting.

To remedy the problem, in this paper, we first propose using Remedy 1 by

regressing Yt directly on the transformed series X ′
t. The rejection rates for this

setting are reported in Table 6.1.

Table 6.1: Rejection Rate in the simulation for various ϕ and N when regressing Yt on X ′
t.

Case Coefficients N=100 N=500 N=1000 Average

(a) ϕ = 0 0.0496 0.0487 0.0523 0.0502

(b) ϕ = 0.1 0.0385 0.0384 0.0406 0.0392

(c) ϕ = 0.3 0.0196 0.0190 0.0198 0.0195

(d) ϕ = 0.5 0.0074 0.0071 0.0057 0.0067

(e) ϕ = 0.7 0.0011 0.0001 0.0004 0.0005

(f) ϕ = 0.9 0.0000 0.0000 0.0000 0.0000

Note: X ′
t = (1−B)Xt = Xt −Xt−1. Readers may read Remedy 1 for more information.

Table 6.1 paints a strikingly different picture. When ϕ = 0, Yt consists purely

of white noise, and the rejection rate is close to the nominal 5% level. However,

as ϕ increases, the rejection rate declines monotonically. By the time ϕ ≥ 0.7,

the rejection rate falls to nearly zero, and for ϕ = 0.9, the test never rejects the

null at all across 10,000 replications. This pattern suggests that regressing Yt on
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X ′
t systematically over-rejects as persistence in ϕ increases. The test no longer

has the correct size and becomes increasingly conservative. In other words,

although X ′
t is stationary, using it to explain the original Yt does not restore

valid inference. These results support Conjectures 4.1 and 4.2 to the extent

that the regression does not generate spurious significance; however, they also

confirm Conjecture 4.3, which posits that the standard t test is not appropriate

in this case. In fact, the dramatic under-rejection indicates that the classical

inference framework breaks down, and new testing approaches may be needed

for the Yt and X ′
t specification. The results in Table 6.1 suggest that though

using Remedy 1 to regress Yt on X ′
t = Xt − Xt−1 is a good remedy to correct

the spurious problem, it results in a smaller size. Thus, this concludes that

Remedy 1 is not a good remedy. We will explore the issue in the future.

We then propose using Remedy 2 by regressing Y ′
t = (1 − ϕ̂YB)Yt = Yt −

ϕ̂Y Yt−1 onX ′
t = (1−B)Xt = Xt−Xt−1 and examine whether this transformation

restores the validity of the test. The rejection rates under this setting are

reported in Table 6.2:

Table 6.2: Rejection Rate in the simulation for various ϕ and N when regressing Y ′
t on X ′

t.

Case Coefficients N=100 N=500 N=1000 Average

(a) ϕ = 0 0.0488 0.0486 0.0485 0.0486

(b) ϕ = 0.1 0.0490 0.0473 0.0478 0.0480

(c) ϕ = 0.3 0.0482 0.0510 0.0473 0.0488

(d) ϕ = 0.5 0.0483 0.0480 0.0513 0.0492

(e) ϕ = 0.7 0.0480 0.0458 0.0485 0.0474

(f) ϕ = 0.9 0.0446 0.0473 0.0535 0.0485

Overall Average 0.0484

Note: Y ′
t = (1− ϕ̂Y B)Yt = Yt − ϕ̂Y Yt−1 and X ′

t = (1−B)Xt = Xt −Xt−1. Readers may read

Remedy 2 for more information.

Table 6.2 shows that the rejection rates remain extremely close to the nom-
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inal 5% level across all cases, regardless of the value of ϕ or the sample size N .

Even at the extreme case ϕ = 0.9, the rejection rate is 4.9%, which is nearly

identical to the theoretical benchmark. These results provide strong evidence

that the remedy transformation successfully eliminates the spurious regression

problem. The t test based on the standard regression model behaves as ex-

pected, and the distribution of the test statistic appears valid. This supports

both Conjecture 4.4 (that regressing Y ′
t on X ′

t yields meaningful outcomes)

and Conjecture 4.5 (that the regression is not spurious under the standard test

framework). The results in Table 6.2 suggest that using Remedy 2 to regress

Y ′
t = (1− ϕ̂YB)Yt = Yt − ϕ̂Y Yt−1 on X ′

t = (1−B)Xt = Xt −Xt−1 is not only a

good remedy to correct the spurious problem, but also a good remedy to keep

the size to be close to the theoretical benchmark. Thus, this concludes that

Remedy 2 is a very good remedy.

Table 6.3: Rejection Rate in the simulation for various ϕ and N when regressing Y ′′
t on X ′

t.

ϕY N=100 N=500 N=1000 Average

ϕY = 0 0.0498 0.0472 0.0514 0.0495

ϕY = 0.1 0.0506 0.0483 0.0516 0.0502

ϕY = 0.3 0.0489 0.0495 0.0515 0.05

ϕY = 0.5 0.05 0.0472 0.0518 0.0497

ϕY = 0.7 0.0456 0.0501 0.0509 0.0489

ϕY = 0.9 0.0481 0.0506 0.0495 0.0494

Overall Average 0.0496

Note: Y ′′
t = Yt

1−ϕY B and X ′
t =

Xt
1−ϕXB . Readers may read Remedy 3 for more information.

Similar to the results in Table 6.2, Table 6.3 also shows that the rejection

rates remain extremely close to the nominal 5% level across all cases, regardless

of the value of ϕ or the sample size N . Even at the extreme case ϕ = 0.9,

the rejection rate is 4.9%, which is nearly identical to the theoretical bench-

mark. These results provide strong evidence that the remedy transformation

15



successfully eliminates the spurious regression problem. The t test based on

the standard regression model behaves as expected, and the distribution of the

test statistic appears valid. This supports both Conjecture 4.6 (that regressing

Y ′′
t on X ′′

t yields meaningful outcomes) and Conjecture 4.7 (that the regression

is not spurious under the standard test framework). The results in Table 6.3

suggest that using Remedy 3 to regress Y ′′
t = Yt

1−ϕY B
on X ′′

t = Xt

1−ϕXB is not only

a good remedy to correct the spurious problem, but also a good remedy to keep

the size to be close to the theoretical benchmark. Thus, this concludes that

Remedy 3 is a very good remedy.

Now, we examine between Remedy 2 and Remedy 3, which one is better.

Since the overall average of the last column in Table 6.2 is 0.0484, while the

overall average of the last column in Table 6.3 is 0.0496, which is closer to the

theoretical benchmark. Thus, we conclude that Remedy 3 is slightly better

according to our simulation.

7 Conclusion and Future Study

Based on the foundational work of Granger and Newbold (1974) to address the

issue of regressing a stationary time series, Yt, on a non-stationary time series,

Xt, (we call it the I0I1 model), many papers in the literature report results

of the I0I1 model. For example, Singh et al. (2011) regressed stock returns on

GDP. However, very few studies have examined whether there are any problems

with using the model. Recently, Wong and Yue (2024) conducted a simulation

and found that regressing a stationary time series, Yt, on a non-stationary time

series, Xt, could be spurious. They then show that the statistics T β
N for testing

Hβ
0 : β = β0 versus Hβ

1 : β ̸= β0 from the traditional regression model (we call

it the I0I0 model) do not have any asymptotic distribution with both mean and
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variance tending to infinity and conclude that the statistics cannot be used for

the I0I1 model. To bridge the gap in the literature, in this paper, we introduced

three remedies to overcome the limitations of the statistics.

Our first proposed remedy (Remedy 1) is to recommend academics and prac-

titioners regress Yt on X ′
t = Xt − Xt−1 (see Equation (4.1)). Our simulation

results (as shown in Table 6.1) suggest that using Remedy 1 could correct the

spurious problem, but it results in getting a much smaller size. Thus, this

concludes that Remedy 1 is not a good remedy.

Our second proposed remedy (Remedy 2) is to recommend academics and

practitioners regress Y ′
t = (1− ϕ̂YB)Yt (see Equation (4.3)) on X ′

t = Xt −Xt−1

(see Equation (4.1)). Our simulation results (as shown in Table 6.2) suggest

that Remedy 2 is not only a good remedy to correct the spurious problem, but

also a good remedy to keep the size close to the theoretical benchmark. Thus,

we conclude that Remedy 2 is a very good remedy.

Our third proposed remedy (Remedy 3) is to recommend academics and

practitioners regress Y ′′
t = Yt

1−ϕY B
on X ′′

t = Xt

1−ϕXB (see Equation (4.5)). Sim-

ilarly, our simulation results (as shown in Table 6.3) suggest that Remedy 3

is also a good remedy to correct the spurious problem as well as keep the size

close to the theoretical benchmark. Thus, we conclude that Remedy 3 is also a

very good remedy. To examine between Remedy 2 and Remedy 3, which one

is better, we conducted simulation and found that the overall average of the

rejection rate (see Table 6.2) by using Remedy 2 is 0.0484, while the overall

average of the rejection rate (see Table 6.3) by using Remedy 3 is 0.0496, which

is closer to the theoretical benchmark. Thus, we conclude that Remedy 3 is

slightly better according to our simulation.

There could be some limitations of our paper. For example, the models used
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in our paper is very simple. Thus, extensions of our paper include studying

more complicated models. Second, our paper only provided the results of the

simulation but did not develop any theory for the issue. Thus, extensions of our

paper include developing some theories on the issue, see, for example, Wong

and Pham (2022) and Wong and Pham (2024b). We also note that Wong and

Pham (2022) and Wong and Pham (2023) have shown that the test from the

standard regression model could make significant regression with autoregressive

noise become insignificant for small sample. Academics could incorporate the

idea of this paper to extend the work from Wong and Pham (2022) and Wong

and Pham (2023).
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